Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Mol Sci ; 22(24)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1554804

RESUMEN

In the last few years, microRNA-mediated regulation has been shown to be important in viral infections. In fact, viral microRNAs can alter cell physiology and act on the immune system; moreover, cellular microRNAs can regulate the virus cycle, influencing positively or negatively viral replication. Accordingly, microRNAs can represent diagnostic and prognostic biomarkers of infectious processes and a promising approach for designing targeted therapies. In the past 18 months, the COVID-19 infection from SARS-CoV-2 has engaged many researchers in the search for diagnostic and prognostic markers and the development of therapies. Although some research suggests that the SARS-CoV-2 genome can produce microRNAs and that host microRNAs may be involved in the cellular response to the virus, to date, not enough evidence has been provided. In this paper, using a focused bioinformatic approach exploring the SARS-CoV-2 genome, we propose that SARS-CoV-2 is able to produce microRNAs sharing a strong sequence homology with the human ones and also that human microRNAs may target viral RNA regulating the virus life cycle inside human cells. Interestingly, all viral miRNA sequences and some human miRNA target sites are conserved in more recent SARS-CoV-2 variants of concern (VOCs). Even if experimental evidence will be needed, in silico analysis represents a valuable source of information useful to understand the sophisticated molecular mechanisms of disease and to sustain biomedical applications.


Asunto(s)
MicroARNs/genética , SARS-CoV-2/genética , Replicación Viral/genética , COVID-19/genética , Biología Computacional/métodos , Virus ADN/genética , Expresión Génica/genética , Regulación Viral de la Expresión Génica/genética , Genoma Viral/genética , Interacciones Huésped-Patógeno/genética , ARN Viral/genética , Homología de Secuencia
2.
J Vet Sci ; 22(1): e12, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: covidwho-1389650

RESUMEN

BACKGROUND: Bats have been considered natural reservoirs for several pathogenic human coronaviruses (CoVs) in the last two decades. Recently, a bat CoV was detected in the Republic of Korea; its entire genome was sequenced and reported to be genetically similar to that of the severe acute respiratory syndrome CoV (SARS-CoV). OBJECTIVES: The objective of this study was to compare the genetic sequences of SARS-CoV, SARS-CoV-2, and the two Korean bat CoV strains 16BO133 and B15-21, to estimate the likelihood of an interaction between the Korean bat CoVs and the human angiotensin-converting enzyme 2 (ACE2) receptor. METHODS: The phylogenetic analysis was conducted with the maximum-likelihood (ML) method using MEGA 7 software. The Korean bat CoVs receptor binding domain (RBD) of the spike protein was analyzed by comparative homology modeling using the SWISS-MODEL server. The binding energies of the complexes were calculated using PRODIGY and MM/GBGA. RESULTS: Phylogenetic analyses of the entire RNA-dependent RNA polymerase, spike regions, and the complete genome revealed that the Korean CoVs, along with SARS-CoV and SARS-CoV-2, belong to the subgenus Sarbecovirus, within BetaCoVs. However, the two Korean CoVs were distinct from SARS-CoV-2. Specifically, the spike gene of the Korean CoVs, which is involved in host infection, differed from that of SARS-CoV-2, showing only 66.8%-67.0% nucleotide homology and presented deletions within the RBD, particularly within regions critical for cross-species transmission and that mediate interaction with ACE2. Binding free energy calculation revealed that the binding affinity of Korean bat CoV RBD to hACE2 was drastically lower than that of SARS-CoV and SARS-CoV-2. CONCLUSIONS: These results suggest that Korean bat CoVs are unlikely to bind to the human ACE2 receptor.


Asunto(s)
Quirópteros/virología , Coronavirus/genética , SARS-CoV-2/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Animales , Genes Virales/genética , Genoma Viral/genética , Genómica , Humanos , Funciones de Verosimilitud , Filogenia , Receptor de Angiotensina Tipo 2/genética , Receptor de Angiotensina Tipo 2/metabolismo , República de Corea , Análisis de Secuencia de ADN , Homología de Secuencia , Glicoproteína de la Espiga del Coronavirus/genética , Acoplamiento Viral
3.
STAR Protoc ; 2(3): 100617, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1386745

RESUMEN

This protocol is a comprehensive guide to phage display-based selection of virus neutralizing VH antibody domains. It details three optimized parts including (1) construction of a large-sized (theoretically > 1011) naïve human antibody heavy chain domain library, (2) SARS-CoV-2 antigen expression and stable cell line construction, and (3) library panning for selection of SARS-CoV-2-specific antibody domains. Using this protocol, we identified a high-affinity neutralizing human VH antibody domain, VH ab8, which exhibits high prophylactic and therapeutic efficacy. For complete details on the use and execution of this protocol, please refer to Li et al. (2020).


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Cadenas Pesadas de Inmunoglobulina/inmunología , Región Variable de Inmunoglobulina/inmunología , Biblioteca de Péptidos , SARS-CoV-2/inmunología , Secuencia de Aminoácidos , Secuencia de Bases , COVID-19/virología , Técnicas de Visualización de Superficie Celular/métodos , Humanos , SARS-CoV-2/aislamiento & purificación , Homología de Secuencia
4.
Front Immunol ; 12: 692729, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1369667

RESUMEN

Epidemiological studies and clinical trials suggest Bacillus Calmette-Guérin (BCG) vaccine has protective effects against coronavirus disease 2019 (COVID-19). There are now over 30 clinical trials evaluating if BCG vaccination can prevent or reduce the severity of COVID-19. However, the mechanism by which BCG vaccination can induce severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell responses is unknown. Here, we identify 8 novel BCG-derived peptides with significant sequence homology to either SARS-CoV-2 NSP3 or NSP13-derived peptides. Using an in vitro co-culture system, we show that human CD4+ and CD8+ T cells primed with a BCG-derived peptide developed enhanced reactivity to its corresponding homologous SARS-CoV-2-derived peptide. As expected, HLA differences between individuals meant that not all persons developed immunogenic responses to all 8 BCG-derived peptides. Nevertheless, all of the 20 individuals that were primed with BCG-derived peptides developed enhanced T cell reactivity to at least 7 of 8 SARS-CoV-2-derived peptides. These findings provide an in vitro mechanism that may account, in part, for the epidemiologic observation that BCG vaccination confers some protection from COVID-19.


Asunto(s)
Vacuna BCG/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Reacciones Cruzadas , SARS-CoV-2/inmunología , Adulto , COVID-19/inmunología , COVID-19/prevención & control , Células Cultivadas , Técnicas de Cocultivo , Femenino , Citometría de Flujo , Humanos , Masculino , Análisis de Secuencia de Proteína , Homología de Secuencia , Vacunas de Subunidad/inmunología , Adulto Joven
5.
Int J Mol Sci ; 21(19)2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1298151

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), causing Coronavirus Disease 19 (COVID-19), emerged at the end of 2019 and quickly spread to cause a global pandemic with severe socio-economic consequences. The early sequencing of its RNA genome revealed its high similarity to SARS, likely to have originated from bats. The SARS-CoV-2 non-structural protein 10 (nsp10) displays high sequence similarity with its SARS homologue, which binds to and stimulates the 3'-to-5' exoribonuclease and the 2'-O-methlytransferase activities of nsps 14 and 16, respectively. Here, we report the biophysical characterization and 1.6 Å resolution structure of the unbound form of nsp10 from SARS-CoV-2 and compare it to the structures of its SARS homologue and the complex-bound form with nsp16 from SARS-CoV-2. The crystal structure and solution behaviour of nsp10 will not only form the basis for understanding the role of SARS-CoV-2 nsp10 as a central player of the viral RNA capping apparatus, but will also serve as a basis for the development of inhibitors of nsp10, interfering with crucial functions of the replication-transcription complex and virus replication.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas Reguladoras y Accesorias Virales/química , Sitios de Unión , Cristalografía por Rayos X , Unión Proteica , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Homología de Secuencia , Proteínas Reguladoras y Accesorias Virales/metabolismo , Dedos de Zinc
6.
Viruses ; 13(6)2021 05 31.
Artículo en Inglés | MEDLINE | ID: covidwho-1251801

RESUMEN

Infectious bronchitis virus (IBV) was first identified in the 1930s and it imposes a major economic burden on the poultry industry. In particular, GI-19 lineage has spread globally and has evolved constantly since it was first detected in China. In this study, we analyzed S1 gene sequences from 60 IBVs isolated in South Korea. Two IBV lineages, GI-15 and GI-19, were identified in South Korea. Phylogenetic analysis suggested that there were six distinct subgroups (KM91-like, K40/09-like, and QX-like I to IV) of the South Korean GI-19 IBVs. Among them, QX-type III and IV subgroups, which are phylogenetically different from those reported in South Korea in the past, accounted for more than half of the total. Moreover, the phylogeographic analysis of the QX-like subgroups indicated at least four distinct introductions of GI-19 IBVs into South Korea during 2001-2020. The efficacy of commercialized vaccines against the recently introduced QX-like subgroups should be verified, and continuous international surveillance efforts and quarantine procedures should be enhanced to prevent the incursion of viruses.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Virus de la Bronquitis Infecciosa/genética , Enfermedades de las Aves de Corral/virología , Animales , Pollos , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Genómica , Genotipo , Virus de la Bronquitis Infecciosa/clasificación , Virus de la Bronquitis Infecciosa/aislamiento & purificación , Filogenia , Enfermedades de las Aves de Corral/epidemiología , República de Corea/epidemiología , Análisis de Secuencia de ARN , Homología de Secuencia , Glicoproteína de la Espiga del Coronavirus/genética
7.
Nat Struct Mol Biol ; 28(7): 573-582, 2021 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1279891

RESUMEN

SARS-CoV-2 ORF3a is a putative viral ion channel implicated in autophagy inhibition, inflammasome activation and apoptosis. 3a protein and anti-3a antibodies are found in infected patient tissues and plasma. Deletion of 3a in SARS-CoV-1 reduces viral titer and morbidity in mice, suggesting it could be an effective target for vaccines or therapeutics. Here, we present structures of SARS-CoV-2 3a determined by cryo-EM to 2.1-Å resolution. 3a adopts a new fold with a polar cavity that opens to the cytosol and membrane through separate water- and lipid-filled openings. Hydrophilic grooves along outer helices could form ion-conduction paths. Using electrophysiology and fluorescent ion imaging of 3a-reconstituted liposomes, we observe Ca2+-permeable, nonselective cation channel activity, identify mutations that alter ion permeability and discover polycationic inhibitors of 3a activity. 3a-like proteins are found across coronavirus lineages that infect bats and humans, suggesting that 3a-targeted approaches could treat COVID-19 and other coronavirus diseases.


Asunto(s)
Microscopía por Crioelectrón , Nanoestructuras , SARS-CoV-2 , Proteínas Viroporinas/química , Proteínas Viroporinas/ultraestructura , Animales , Calcio/metabolismo , Quirópteros/virología , Coronaviridae , Electrofisiología , Fluorescencia , Humanos , Transporte Iónico , Liposomas , Modelos Moleculares , Nanoestructuras/química , Nanoestructuras/ultraestructura , Sistemas de Lectura Abierta , Imagen Óptica , Reproducibilidad de los Resultados , SARS-CoV-2/química , SARS-CoV-2/ultraestructura , Homología de Secuencia , Proteínas Virales/química , Proteínas Virales/ultraestructura , Proteínas Viroporinas/antagonistas & inhibidores
8.
Viruses ; 13(4)2021 04 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1194711

RESUMEN

Coronavirus-like organisms have been previously identified in Arthropod ectoparasites (such as ticks and unfed cat flea). Yet, the question regarding the possible role of these arthropods as SARS-CoV-2 passive/biological transmission vectors is still poorly explored. In this study, we performed in silico structural and binding energy calculations to assess the risks associated with possible ectoparasite transmission. We found sufficient similarity between ectoparasite ACE and human ACE2 protein sequences to build good quality 3D-models of the SARS-CoV-2 Spike:ACE complex to assess the impacts of ectoparasite mutations on complex stability. For several species (e.g., water flea, deer tick, body louse), our analyses showed no significant destabilisation of the SARS-CoV-2 Spike:ACE complex, suggesting these species would bind the viral Spike protein. Our structural analyses also provide structural rationale for interactions between the viral Spike and the ectoparasite ACE proteins. Although we do not have experimental evidence of infection in these ectoparasites, the predicted stability of the complex suggests this is possible, raising concerns of a possible role in passive transmission of the virus to their human hosts.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Artrópodos/metabolismo , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Artrópodos/química , Artrópodos/clasificación , Artrópodos/genética , Sitios de Unión , COVID-19/transmisión , Infestaciones Ectoparasitarias/parasitología , Humanos , Modelos Moleculares , Mutación , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/genética , Filogenia , Unión Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , Homología de Secuencia , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
9.
Int J Biol Macromol ; 181: 801-809, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: covidwho-1188606

RESUMEN

The current Coronavirus Disease 19 (COVID-19) pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) shows similar pathology to MERS and SARS-CoV, with a current estimated fatality rate of 1.4%. Open reading frame 10 (ORF10) is a unique SARS-CoV-2 accessory protein, which contains eleven cytotoxic T lymphocyte (CTL) epitopes each of nine amino acids in length. Twenty-two unique SARS-CoV-2 ORF10 variants have been identified based on missense mutations found in sequence databases. Some of these mutations are predicted to decrease the stability of ORF10 in silico physicochemical and structural comparative analyses were carried out on SARS-CoV-2 and Pangolin-CoV ORF10 proteins, which share 97.37% amino acid (aa) homology. Though there is a high degree of ORF10 protein similarity of SARS-CoV-2 and Pangolin-CoV, there are differences of these two ORF10 proteins related to their sub-structure (loop/coil region), solubility, antigenicity and shift from strand to coil at aa position 26 (tyrosine). SARS-CoV-2 ORF10, which is apparently expressed in vivo since reactive T cell clones are found in convalescent patients should be monitored for changes which could correlate with the pathogenesis of COVID-19.


Asunto(s)
COVID-19/virología , SARS-CoV-2/genética , Proteínas no Estructurales Virales/genética , Epítopos de Linfocito T/genética , Genoma Viral/genética , Humanos , Mutación , Sistemas de Lectura Abierta , SARS-CoV-2/metabolismo , Homología de Secuencia , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/genética
10.
BMC Bioinformatics ; 22(1): 182, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1175288

RESUMEN

BACKGROUND: The rapid spread of the COVID-19 demands immediate response from the scientific communities. Appropriate countermeasures mean thoughtful and educated choice of viral targets (epitopes). There are several articles that discuss such choices in the SARS-CoV-2 proteome, other focus on phylogenetic traits and history of the Coronaviridae genome/proteome. However none consider viral protein low complexity regions (LCRs). Recently we created the first methods that are able to compare such fragments. RESULTS: We show that five low complexity regions (LCRs) in three proteins (nsp3, S and N) encoded by the SARS-CoV-2 genome are highly similar to regions from human proteome. As many as 21 predicted T-cell epitopes and 27 predicted B-cell epitopes overlap with the five SARS-CoV-2 LCRs similar to human proteins. Interestingly, replication proteins encoded in the central part of viral RNA are devoid of LCRs. CONCLUSIONS: Similarity of SARS-CoV-2 LCRs to human proteins may have implications on the ability of the virus to counteract immune defenses. The vaccine targeted LCRs may potentially be ineffective or alternatively lead to autoimmune diseases development. These findings are crucial to the process of selection of new epitopes for drugs or vaccines which should omit such regions.


Asunto(s)
Proteoma , SARS-CoV-2/genética , Homología de Secuencia , Vacunas contra la COVID-19 , Proteínas de la Nucleocápside de Coronavirus/inmunología , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/inmunología , Humanos , Fosfoproteínas/inmunología , Filogenia , ARN Polimerasa Dependiente del ARN/inmunología , Factores de Riesgo , Glicoproteína de la Espiga del Coronavirus/inmunología , Proteínas no Estructurales Virales/inmunología
11.
Food Chem Toxicol ; 149: 112009, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: covidwho-1139499

RESUMEN

SARS-CoV-2 is the coronavirus that originated in Wuhan in December 2019 and has spread globally. Studies have shown that smokers are less likely to be diagnosed with or be hospitalized for COVID-19 but, once hospitalized, have higher odds for an adverse outcome. We have previously presented the potential interaction between SARS-CoV-2 Spike glycoprotein and nicotinic acetylcholine receptors (nAChRs), due to a "toxin-like" epitope on the Spike glycoprotein, with homology to a sequence of a snake venom toxin. This epitope coincides with the well-described cryptic epitope for the human anti-SARS-CoV antibody CR3022. In this study, we present the molecular complexes of both SARS-CoV and SARS-CoV-2 Spike glycoproteins, at their open or closed conformations, with the model of the human α7 nAChR. We found that all studied protein complexes' interface involves a large part of the "toxin-like" sequences of SARS-CoV and SARS-CoV-2 Spike glycoproteins and toxin binding site of human α7 nAChR. Our findings provide further support to the hypothesis about the protective role of nicotine and other cholinergic agonists. The potential therapeutic role of CR3022 and other similar monoclonal antibodies with increased affinity for SARS-CoV-2 Spike glycoprotein against the clinical effects originating from the dysregulated cholinergic pathway should be further explored.


Asunto(s)
COVID-19/virología , Epítopos , Nicotina/farmacología , SARS-CoV-2/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Glicoproteína de la Espiga del Coronavirus/química , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Secuencia de Aminoácidos , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/química , Anticuerpos Antivirales/uso terapéutico , Sitios de Unión de Anticuerpos , COVID-19/metabolismo , COVID-19/prevención & control , Humanos , Modelos Moleculares , Agonistas Nicotínicos/química , Agonistas Nicotínicos/uso terapéutico , Sistema Colinérgico no Neuronal , Pandemias , Factores Protectores , Conformación Proteica , Homología de Secuencia , Transducción de Señal , Fumadores , Fumar , Venenos de Serpiente/química
12.
Biochem Biophys Res Commun ; 538: 97-103, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: covidwho-1139452

RESUMEN

The recognition of ACE2 by the receptor-binding domain (RBD) of spike protein mediates host cell entry. The objective of the work is to identify SARS-CoV2 spike variants that emerged during the pandemic and evaluate their binding affinity with ACE2. Evolutionary analysis of 2178 SARS-CoV2 genomes identifies RBD variants that are under selection bias. The binding efficacy of these RBD variants to the ACE2 has been analyzed by using protein-protein docking and binding free energy calculations. Pan-proteomic analysis reveals 113 mutations among them 33 are parsimonious. Evolutionary analysis reveals five RBD variants A348T, V367F, G476S, V483A, and S494P are under strong positive selection bias. Variations at these sites alter the ACE2 binding affinity. A348T, G476S, and V483A variants display reduced affinity to ACE2 in comparison to the Wuhan SARS-CoV2 spike protein. While the V367F and S494P population variants display a higher binding affinity towards human ACE2. Reorientation of several crucial residues at the RBD-ACE2 interface facilitates additional hydrogen bond formation for the V367F variant which enhances the binding energy during ACE2 recognition. On the other hand, the enhanced binding affinity of S494P is attributed to strong interfacial complementarity between the RBD and ACE2.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/virología , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , COVID-19/metabolismo , Biología Computacional/métodos , Evolución Molecular , Humanos , Simulación del Acoplamiento Molecular/métodos , Unión Proteica , Dominios Proteicos , Elementos Estructurales de las Proteínas , SARS-CoV-2/aislamiento & purificación , Homología de Secuencia , Glicoproteína de la Espiga del Coronavirus/química
13.
Exp Eye Res ; 203: 108433, 2021 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1002524

RESUMEN

Although severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) infection have emerged globally, findings related to ocular involvement and reported cases are quite limited. Immune reactions against viral infections are closely related to viral and host proteins sequence similarity. Molecular Mimicry has been described for many different viruses; sequence similarities of viral and human tissue proteins may trigger autoimmune reactions after viral infections due to similarities between viral and human structures. With this study, we aimed to investigate the protein sequence similarity of SARS CoV-2 with retinal proteins and retinal pigment epithelium (RPE) surface proteins. Retinal proteins involved in autoimmune retinopathy and retinal pigment epithelium surface transport proteins were analyzed in order to infer their structural similarity to surface glycoprotein (S), nucleocapsid phosphoprotein (N), membrane glycoprotein (M), envelope protein (E), ORF1ab polyprotein (orf1ab) proteins of SARS CoV-2. Protein similarity comparisons, 3D protein structure prediction, T cell epitopes-MHC binding prediction, B cell epitopes-MHC binding prediction and the evaluation of the antigenicity of peptides assessments were performed. The protein sequence analysis was made using the Pairwise Sequence Alignment and the LALIGN program. 3D protein structure estimates were made using Swiss Model with default settings and analyzed with TM-align web server. T-cell epitope identification was performed using the Immune Epitope Database and Analysis (IEDB) resource Tepitool. B cell epitopes based on sequence characteristics of the antigen was performed using amino acid scales and HMMs with the BepiPred 2.0 web server. The predicted peptides/epitopes in terms of antigenicity were examined using the default settings with the VaxiJen v2.0 server. Analyses showed that, there is a meaningful similarities between 6 retinal pigment epithelium surface transport proteins (MRP-4, MRP-5, RFC1, SNAT7, TAUT and MATE) and the SARS CoV-2 E protein. Immunoreactive epitopic sites of these proteins which are similar to protein E epitope can create an immune stimulation on T cytotoxic and T helper cells and 6 of these 9 epitopic sites are also vaxiJen. These result imply that autoimmune cross-reaction is likely between the studied RPE proteins and SARS CoV-2 E protein. The structure of SARS CoV-2, its proteins and immunologic reactions against these proteins remain largely unknown. Understanding the structure of SARS CoV-2 proteins and demonstration of similarity with human proteins are crucial to predict an autoimmune response associated with immunity against host proteins and its clinical manifestations as well as possible adverse effects of vaccination.


Asunto(s)
Secuencia de Aminoácidos , Enfermedades Autoinmunes/virología , Proteínas del Ojo/química , Enfermedades de la Retina/virología , SARS-CoV-2/química , Homología de Secuencia , Proteínas Virales/química , COVID-19/epidemiología , Biología Computacional , Proteínas de la Envoltura de Coronavirus/química , Proteínas de la Nucleocápside de Coronavirus/química , Infecciones Virales del Ojo/virología , Humanos , Glicoproteínas de Membrana/química , Fosfoproteínas/química , Poliproteínas/química , Epitelio Pigmentado de la Retina/química , Proteínas de la Matriz Viral/química
14.
Med Sci Monit ; 26: e929789, 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: covidwho-948228

RESUMEN

Recent studies have shown a significant level of T cell immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in convalescent coronavirus disease 2019 (COVID-19) patients and unexposed healthy individuals. Also, SARS-CoV-2-reactive T memory cells occur in unexposed healthy individuals from endemic coronaviruses that cause the 'common cold.' The finding of the expression of adaptive SARS-CoV-2-reactive T memory cells in unexposed healthy individuals may be due to multiple cross-reactive viral protein targets following previous exposure to endemic human coronavirus infections. The opinion of the authors is that determination of protein sequence homologies across seemingly disparate viral protein libraries may provide epitope-matching data that link SARS-CoV-2-reactive T memory cell signatures to prior administration of cross-reacting vaccines to common viral pathogens. Exposure to SARS-CoV-2 initiates diverse cellular immune responses, including the associated 'cytokine storm'. Therefore, it is possible that the intact virus possesses a required degree of conformational matching, or stereoselectivity, to effectively target its receptor on multiple cell types. Therefore, conformational matching may be viewed as an evolving mechanism of viral infection and viral replication by an evolutionary modification of the angiotensin-converting enzyme 2 (ACE2) receptor required for SARS-CoV-2 binding and host cell entry. The authors propose that convalescent memory T cell immunity in individuals with mild or asymptomatic SARS-CoV-2 infection may result from an evolutionarily adapted immune response to coronavirus and the 'common cold'.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , Infecciones Asintomáticas , COVID-19/inmunología , Resfriado Común/inmunología , Memoria Inmunológica/genética , Anticuerpos Antivirales , COVID-19/sangre , COVID-19/diagnóstico , COVID-19/virología , Resfriado Común/prevención & control , Resfriado Común/virología , Reacciones Cruzadas/genética , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Evolución Molecular , Humanos , Inmunidad Celular/genética , Inmunogenicidad Vacunal , Rhinovirus/genética , Rhinovirus/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Homología de Secuencia , Índice de Severidad de la Enfermedad , Subgrupos de Linfocitos T/inmunología , Linfocitos T/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Internalización del Virus , Replicación Viral/genética , Replicación Viral/inmunología
15.
Virus Res ; 289: 198170, 2020 11.
Artículo en Inglés | MEDLINE | ID: covidwho-793817

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) was first identified in Wuhan, China late in 2019. Nine months later (Sept. 23, 2020), the virus has infected > 31.6 million people around the world and caused > 971.000 (3.07 %) fatalities in 220 countries and territories. Research on the genetics of the SARS-CoV-2 genome, its mutants and their penetrance can aid future defense strategies. By analyzing sequence data deposited between December 2019 and end of May 2020, we have compared nucleotide sequences of 570 SARS-CoV-2 genomes from China, Europe, the US, and India to the sequence of the Wuhan isolate. During worldwide spreading among human populations, at least 10 distinct hotspot mutations had been selected and found in up to > 80 % of viral genomes. Many of these mutations led to amino acid exchanges in replication-relevant viral proteins. Mutations in the SARS-CoV-2 genome would also impinge upon the secondary structure of the viral RNA molecule and its repertoire of interactions with essential cellular and viral proteins. The increasing frequency of SARS-CoV-2 mutation hotspots might select for dangerous viral pathogens. Alternatively, in a 29.900 nucleotide-genome, there might be a limit to the number of mutable and selectable sites which, when exhausted, could prove disadvantageous to viral survival. The speed, at which novel SARS-CoV-2 mutants are selected and dispersed around the world, could pose problems for the development of vaccines and therapeutics.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/virología , Genoma Viral , Mutación , Pandemias , Neumonía Viral/virología , ARN Viral/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Secuencia de Bases , Betacoronavirus/patogenicidad , Betacoronavirus/fisiología , Evolución Biológica , COVID-19 , China , Secuencia Conservada , Infecciones por Coronavirus/epidemiología , Europa (Continente) , Alemania , Salud Global , Humanos , India , Neumonía Viral/epidemiología , Federación de Rusia , SARS-CoV-2 , Alineación de Secuencia , Homología de Secuencia , Estados Unidos , Replicación Viral
16.
Proc Natl Acad Sci U S A ; 117(29): 17195-17203, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: covidwho-624792

RESUMEN

The vast majority of intracellular protein targets are refractory toward small-molecule therapeutic engagement, and additional therapeutic modalities are needed to overcome this deficiency. Here, the identification and characterization of a natural product, WDB002, reveals a therapeutic modality that dramatically expands the currently accepted limits of druggability. WDB002, in complex with the FK506-binding protein (FKBP12), potently and selectively binds the human centrosomal protein 250 (CEP250), resulting in disruption of CEP250 function in cells. The recognition mode is unprecedented in that the targeted domain of CEP250 is a coiled coil and is topologically featureless, embodying both a structural motif and surface topology previously considered on the extreme limits of "undruggability" for an intracellular target. Structural studies reveal extensive protein-WDB002 and protein-protein contacts, with the latter being distinct from those seen in FKBP12 ternary complexes formed by FK506 and rapamycin. Outward-facing structural changes in a bound small molecule can thus reprogram FKBP12 to engage diverse, otherwise "undruggable" targets. The flat-targeting modality demonstrated here has the potential to expand the druggable target range of small-molecule therapeutics. As CEP250 was recently found to be an interaction partner with the Nsp13 protein of the SARS-CoV-2 virus that causes COVID-19 disease, it is possible that WDB002 or an analog may exert useful antiviral activity through its ability to form high-affinity ternary complexes containing CEP250 and FKBP12.


Asunto(s)
Actinobacteria/genética , Antivirales/farmacología , Genoma Bacteriano , Macrólidos/farmacología , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína 1A de Unión a Tacrolimus/química , Proteína 1A de Unión a Tacrolimus/metabolismo , Actinobacteria/metabolismo , Secuencia de Aminoácidos , Antivirales/química , Antivirales/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Evolución Molecular , Células HEK293 , Humanos , Macrólidos/química , Macrólidos/metabolismo , Modelos Moleculares , Conformación Proteica , Homología de Secuencia , Sirolimus/química , Sirolimus/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
17.
Science ; 370(6512): 89-94, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: covidwho-695026

RESUMEN

Many unknowns exist about human immune responses to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. SARS-CoV-2-reactive CD4+ T cells have been reported in unexposed individuals, suggesting preexisting cross-reactive T cell memory in 20 to 50% of people. However, the source of those T cells has been speculative. Using human blood samples derived before the SARS-CoV-2 virus was discovered in 2019, we mapped 142 T cell epitopes across the SARS-CoV-2 genome to facilitate precise interrogation of the SARS-CoV-2-specific CD4+ T cell repertoire. We demonstrate a range of preexisting memory CD4+ T cells that are cross-reactive with comparable affinity to SARS-CoV-2 and the common cold coronaviruses human coronavirus (HCoV)-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1. Thus, variegated T cell memory to coronaviruses that cause the common cold may underlie at least some of the extensive heterogeneity observed in coronavirus disease 2019 (COVID-19) disease.


Asunto(s)
Betacoronavirus/inmunología , Linfocitos T CD4-Positivos/inmunología , Infecciones por Coronavirus/inmunología , Epítopos de Linfocito T/inmunología , Memoria Inmunológica , Neumonía Viral/inmunología , Betacoronavirus/genética , Donantes de Sangre , COVID-19 , Reacciones Cruzadas , Mapeo Epitopo , Epítopos de Linfocito T/genética , Genoma Viral , Humanos , Sistemas de Lectura Abierta , Pandemias , SARS-CoV-2 , Homología de Secuencia
18.
EBioMedicine ; 58: 102890, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-666030

RESUMEN

BACKGROUND: The novel coronavirus (SARS-CoV-2) shares approximately 80% whole genome sequence identity and 66% spike (S) protein identity with that of SARS-CoV. The cross-neutralization between these viruses is currently not well-defined. METHODS: Here, by using the live SARS-CoV-2 virus infection assay as well as HIV-1 based pseudotyped-virus carrying the spike (S) gene of the SARS-CoV-2 (ppSARS-2) and SARS-CoV (ppSARS), we examined whether infections with SARS-CoV and SARS-CoV-2 can induce cross-neutralizing antibodies. FINDINGS: We confirmed that SARS-CoV-2 infects cells via angiotensin converting enzyme 2 (ACE2), the functional receptor for SARS-CoV, and we also found that the recombinant receptor binding domain (RBD) of the S protein of SARS-CoV effectively inhibits ppSARS-2 entry in Huh7.5 cells. However, convalescent sera from SARS-CoV and SARS-CoV-2 patients showed high neutralizing activity only against the homologous virus, with no or limited cross-neutralization activity against the other pseudotyped virus. Similar results were also observed in vaccination studies in mice. INTERPRETATION: Our study demonstrates that although both SARS-CoV and SARS-CoV-2 use ACE2 as a cellular receptor, the neutralization epitopes are not shared by these two closely-related viruses, highlighting challenges towards developing a universal vaccine against SARS-CoV related viruses. FUNDING: This work was supported by the National Key Research and Development Program of China, the National Major Project for Control and Prevention of Infectious Disease in China, and the One Belt and One Road Major Project for infectious diseases.


Asunto(s)
Anticuerpos Antivirales/inmunología , Betacoronavirus/inmunología , Reacciones Cruzadas , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Especificidad de Anticuerpos , Betacoronavirus/genética , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , SARS-CoV-2 , Homología de Secuencia , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
19.
Viruses ; 12(6)2020 06 15.
Artículo en Inglés | MEDLINE | ID: covidwho-598456

RESUMEN

As more cases of COVID-19 are studied and treated worldwide, it had become apparent that the lethal and most severe cases of pneumonia are due to an out-of-control inflammatory response to the SARS-CoV-2 virus. I explored the putative causes of this specific feature through a detailed genomic comparison with the closest SARS-CoV-2 relatives isolated from bats, as well as previous coronavirus strains responsible for the previous epidemics (SARS-CoV and MERS-CoV). The high variability region of the nsp3 protein was confirmed to exhibit the most variations between closest strains. It was then studied in the context of physiological and molecular data available in the literature. A number of convergent findings suggest de-mono-ADP-ribosylation (de-MARylation) of STAT1 by the SARS-CoV-2 nsp3 as a putative cause of the cytokine storm observed in the most severe cases of COVID-19. This may suggest new therapeutic approaches and help in designing assays to predict the virulence of naturally circulating SARS-like animal coronaviruses.


Asunto(s)
ADP-Ribosilación/fisiología , Betacoronavirus/genética , Síndrome de Liberación de Citoquinas/patología , Factor de Transcripción STAT1/metabolismo , Proteínas no Estructurales Virales/metabolismo , Secuencia de Aminoácidos/genética , Enzima Convertidora de Angiotensina 2 , COVID-19 , Infecciones por Coronavirus/patología , Proteasas Similares a la Papaína de Coronavirus , Humanos , Inflamación/patología , Inflamación/virología , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Pandemias , Peptidil-Dipeptidasa A/biosíntesis , Peptidil-Dipeptidasa A/genética , Neumonía Viral/patología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , SARS-CoV-2 , Homología de Secuencia , Proteínas no Estructurales Virales/genética
20.
Proc Natl Acad Sci U S A ; 117(26): 15193-15199, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: covidwho-595720

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses an immediate, major threat to public health across the globe. Here we report an in-depth molecular analysis to reconstruct the evolutionary origins of the enhanced pathogenicity of SARS-CoV-2 and other coronaviruses that are severe human pathogens. Using integrated comparative genomics and machine learning techniques, we identify key genomic features that differentiate SARS-CoV-2 and the viruses behind the two previous deadly coronavirus outbreaks, SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), from less pathogenic coronaviruses. These features include enhancement of the nuclear localization signals in the nucleocapsid protein and distinct inserts in the spike glycoprotein that appear to be associated with high case fatality rate of these coronaviruses as well as the host switch from animals to humans. The identified features could be crucial contributors to coronavirus pathogenicity and possible targets for diagnostics, prognostication, and interventions.


Asunto(s)
Betacoronavirus/genética , Evolución Molecular , Genoma Viral , Proteínas de la Nucleocápside/genética , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Betacoronavirus/clasificación , Betacoronavirus/patogenicidad , Especificidad del Huésped , Humanos , Aprendizaje Automático , Coronavirus del Síndrome Respiratorio de Oriente Medio/clasificación , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Mutagénesis Insercional , Señales de Localización Nuclear/genética , Proteínas de la Nucleocápside/química , Filogenia , SARS-CoV-2 , Homología de Secuencia , Glicoproteína de la Espiga del Coronavirus/química , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA